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Abstract. We apply Noether’s theorem to time-dependent systems to generate an infinite 
number of new invariants. These invariants have proved useful in quantising time- 
dependent systems, playing, in effect, the role of the Hamiltonian for these systems. 

1. Introduction 

Exact invariants for time-dependent systems are decisive for investigating the physical 
properties of these systems. The simplest example illustrating this is the time-depen- 
dent harmonic oscillator, described by the equation 

+ u 2 ( t ) p  = 0.  

Lewis (1968) proved that the quantity 

I =&xp - b x ) 2 + ( p / x ) 2 ]  (1.2) 

is an exact invariant for the time-dependent oscillator. Here x satisfies the auxiliary 
equation 

Lewis derived this result by applying the asymptotic theory of Kruskal(l962) in closed 
form, obtaining (1.2) and (1.3) starting from (1.1). 

The invariant 1 was used by Lewis and Riesenfeld (1969) to construct an exact 
quantum theory of the time-dependent oscillator. This same invariant was used by 
Khandekar and Lawande (1975) who derived an expression for the Feynman pro- 
pagator in terms of the eigenfunctions of I. In many ways the invariant I takes over the 
central role played by the Hamiltonian for time-independent systems. 

Lutzky (1978) derived the invariant (1.2) and the auxiliary equation (1.3) by a 
straightforward application of Noether’s theorem to the Lagrangian 

i + W 2 ( t ) x  = 1/x3. (1.3) 

L = S(p2- 6J2(t )pZ) .  (1.4) 

Ray and Reid (1979) applied Noether’s theorem to the Lagrangian 

thus extending the results of Lutzky. 
Sarlet (1978) studied, in detail, Kruskal’s method of (exact) adiabatic invariants, and 

developed equations which, when satisfied, assured one that the method could be 
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applied in closed form. Sarlet then determined the invariant by solving the Hamilton- 
Jacobi equation. Sarlet’s goal was the determination of all time-dependent Hamil- 
tonians, with one degree of freedom, for which Kruskal’s method yields an exact 
invariant, in a way similar to Lewis’s derivation of (1.2). As examples Sarlet discussed a 
class of polynomial Hamiltonians for which Kruskal’s method leads to exact invariants. 

In this paper we apply Noether’s theorem to a class of Lagrangians which contain 
Sarlet’s polynomial Lagrangians as special cases. We present not only a generalisation 
of Sarlet’s results, but a simpler derivation using Noether’s theorem. 

In 3 2 we present the Lagrangian we use and an outline of Noether’s theorem. In § 3 
we give our main results along with some explicit examples. Finally in § 4 we present 
our conclusions. 

2. Lagrangian and Noether’s theorem 

The polynomial Lagrangians considered by Sarlet (1978) have the form 

L = ( 1 / 2 a ) p k p 2 + b p ‘ p + c p m + d p n ,  (2.1) 

where a, b, c, d are functions of time and k ,  I ,  m, n are constants. In order to obtain 
Sarlet’s Hamiltonians exactly one must make some reduction in the generality of (2.1) 
by further specifying some of the functions a, b, c, d and constants k, I ,  m, n. Instead of 
dealing with the Lagrangian (2.1) we consider the more general Lagrangian 

where a,  b, Gi, Fi are arbitrary functions of their arguments. 

extremising the action 
The equations of motion for the system follow from Hamilton’s principle of 

A =  Ldt .  I 
Performing a transformation to a new time variable defined by 

I=  I ‘ a ( t )  dt, 

the action becomes 

A =  i d ;  I 

(2.3) 

(2.4) 

The new Lagrangian 
In what follows we drop the bar and write 

has the same form as (2.2) with a = 1 and new functions (b; Gi). 

L = L  2 p  k . 2  p + b p ‘ p + x  GiFi. 
i 

The equation of motion for this Lagrangian is 

p + + ( k / 2 p ) p 2  - p - &  1 GiF: = 0. 

This Lagrangian is the one we employ in this paper. 
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We next outline Lutzky's formulation of Noether's theorem. A symmetry trans- 

(2.7) 

formation for a system is described by the group operator 

x = S(P, t ) ( a / a t )  + T(P,  t ) (a/ap) .  

S(aLlat) + 77 ( a L l a P )  + (3 - bi ) (aL /ab)  + iL 

S(aL/at) + v ( a L / d p )  + (4 - p i ) ( a L / a b )  + i L  = f .  

I = (@ - T)(aL/ab) - 5L +f. 

If (2.7) is a symmetry transformation for the system, then the combination of terms 

(2.8) 
is a total time derivative of a function f ( p ,  t ) ,  i.e. 

(2.9) 

(2.10) 

It follows that a constant of the motion for the system is 

In the usual applications the constants (2.10) correspond to conservation of energy, 
momentum, etc. For example, conservation of energy, for an isolated system, is 
associated with 5 =constant, 77 = 0, f = 0 ,  in which case 1 is the constant energy of the 
system. In the present problem, however, the Lagrangian (2.5) does not possess any 
obvious symmetry, and we are, in fact, applying Noether's theorem to determine if it 
allows any symmetry transformations at all. 

3. Examples 

We apply Noether's theorem to the Lagrangian (2.5). The idea is to substitute (2.5) into 
(2.9) and equate powers of p and p, since the equation must be identically satisfied. 
Doing this the p 3  terms yield 

5' = ag/ap = 0 ,  5 = 5( t ) .  
The p z  terms then give 

(3.1) 

The b terms require 

f = [ fd/( l+ 1)  + b&(k + 2)]p'+' + &"*/(k + 2)2 

Finally the terms independent of p yield the equation 

GiF,+iC G i F i + i x  GipFi/(k+2) 
i i i 

(3.3) 

= { [ d j  (1 + 1) + i d  [ 1 /(I + 1) + 1 /( k + 2)l)p '+' + Fp k + 2 /  (k + 2)2. (3.4) 
If this equation is satisfied, then we calculate the invariant I using (2.10). In order not to 
burden the reader with too much tedious discussion, we concentrate on a few special 
cases of solving (3.4). 

Equation (3.4) must be satisfied identically in p. Suppose p k + 2  is linearly indepen- 
dent of the other terms in (3.4). Then we obtain 

g.= 0. (3.5) 
From the results of Lutzky (1978) and Ray and Reid (1979) the equation for [ leads to 
the auxiliary equation. Here we restrict ourselves to systems with non-trivial auxiliary 
equations such as (1.3). The case (3.5) could, of course, be of physical interest, and we 
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exclude it only for brevity. Thus, some of the other terms in (3.4) must be proportional 
to pk+’.  There are several possible cases. 

First suppose the two terms on the right-hand side of (3.4) are linearly dependent 
and linearly independent of the terms on the left-hand side. We then obtain from (3.4) 

(3.6) r / ( k  + 2 ) 2 + 2 4 b / ( k  + 2 )  + .$b/(k + 2 )  = 0, 

and 

5 c GiFl + 4 GiFi + 4 GipF:/(k + 2)  = 0. 
i i i 

(3.7) 

Multiplying (3.6) by 5 we integrate this equation to obtain 

[ g - i 2 / 2 + ( k  + 2 ) d f 2 = 2 A ,  (3.8) 
where A is a constant. After the substitution .$ = x2,  this equation reduces to 

x + ( k  + 2)dx/2 = A / x 3 ,  (3.9) 

which is the auxiliary equation for this case. Note that it has the same form as (1.3) for 
the Lewis invariant. In order to finish the calculation we must solve (3.7). We assume 
all the 6 ’ s  are linearly independent, hence the equation 

fG,F, + lG,E +iG,pF:/(k + 2 )  = 0 (3.10) 

holds for each i. Now in these equations F, and pF: must be proportional or 4 = 0, 
which would collapse our auxiliary equation to a trivial form. 

Hence 

PF: =m,F, ,  m, =constants, (3.11) 

with the solution 

F, = p“,  m , # k + 2 .  

Putting this result back into (3.10) yields the solution for GI, 
[2+2m, l (k+2)1  Gt = G,o/x 9 

(3.12) 

(3.13) 

where the Gio are arbitrary constants. The Lagrangian for this case can then be written 

where x satisfies the auxiliary equation (3.9). The invariant in this case takes the form 

I=’ 2p k [i~ - 2 p i / ( k  + 2 ) ] ’ + 2 A ~ ~ + ~ / [ ( k  + 2 ) x 1 2 - C  G l o p m ~ / ~ 2 m z ’ ( k + 2 ) .  (3.15) 

The equation of motion is (2 .6 ) ,  with the substitutions I =  k + l ,  F, =p”  and 
Gl = Glo/x [2+2mi ’ (k+2)1 .  The equation of motion (2.6), with these substitutions, is linked 
to the auxiliary equation (3.9) by the invariant (3.15). Notice that, whereas G,(t),  E(p) 
started off in the original Lagrangian as arbitrary functions, the imposition of the 
symmetry has forced them to have special forms. 

The system represented by (3.9), (3.14) and (3.15) still represents many special 
cases, depending on the values assumed by the various constants. One interesting case 
is when there is only one non-zero GIo = Go and mi = m = - ( k  + 2 ) .  In this case the 
function G = Go is constant, and the p and x equation are uncoupled. In this case the 

1 
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invariant (3 .15 )  can be used to solve the p equation in terms of solutions to the x 
equation and vice versa. One writes out the invariants I1 and 1 2  for two solutions x1 and 
x 2 ,  keeping the p solution the same. Then one eliminates p between the two invariants 
and obtains the solution for p in terms of 11, 12, x l ,  x 2 .  In the literature this is referred to 
as a 'nonlinear superposition' principle (Ames 1978).  If the p and x equations are 
coupled, this technique will not work. 

As a second example of the solution of (3 .4 )  we assume one of the E = F is of the 
form p k i 2 ,  and again assume 1 + 1 = k + 2 .  In this case we obtain from (3 .4 )  

(3 .16 )  Q ( k  + 2 ) 2  + 24b / (k  + 2 )  + t b / ( k  + 2 )  - [G - 2 [ G  = 0 

and 

5 GIFl + 4 G,Fl + 4 G l p F l l ( k  + 2 )  = 0. (3 .17 )  
1 I I 

The integration of (3 .16)  leads as before to the auxiliary equation 

i + ( k + 2 ) [ d  - ( k + 2 ) G ] x / 2 = A / x 3 ,  (3 .18 )  

where A is an arbitrary constant. The solution of (3 .17 )  is the same as before and leads 
to the same results (3 .12 )  and (3 .13 )  for Fl and GI respectively. The Lagrangian for this 
case is 

9 mi # k + 2 .  (3 .19 )  L = I  2p k . 2  p + b p k + ' p  +Gpk+'+X GiOp""/x [ 2 + 2 m , l i k + 2 ) 1  

I 

Note that in this case the function G ( t )  is arbitrary and appears in the auxiliary 
equation, whefeas the G i ( t )  are determined in terms of the auxiliary equation via (3 .15 ) .  
The invariant for this case would be calculated as before using (2 .10 ) .  We also have the 
same special case as considered for the previous example where p and x equations 
decouple, and we obtain 'nonlinear superposition'. 

There are several other different solutions to (3 .4 )  which lead to different equations 
of motion, auxiliary equations and invariants I. For example, assume 1 + 1 # k + 2 and 
one of the F, = F is p k i 2 .  The Lagrangian for this case would be 

with mi # k + 2 or 1 + 1 .  Gi, as before, is found to be (3 .13 ) ,  where x is a solution to the 
auxiliary equation (3 .18 )  with b = 0. The equation leads to an expression for d in 
terms of x ,  namely 

> (3 .21 )  b = ~ / ~ 2 [ 1 + ( f + l ) / i k + 2 ) 1  

where B is a constant. 
We shall leave the working of further examples to the interested reader. 

4. Conclusions 

In this paper we have applied Noether's theorem to the Lagrangian 
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where Gi, Fi, b are initially arbitrary functions. The application of Noether’s theorem 
leads to (3.4) which must be satisfied identically. Solving (3.4) one obtains an equation 
for x called the auxiliary equation, and then the Noether invariant I in terms of p, p ,  x ,  f 
and the other functions in the Lagrangian. These results generalise the results obtained 
by Sarlet (1978) and also obtain the results in a completely different and simpler 
manner. Of course, Sarlet was interested in more than just finding invariants, he was 
interested in finding Hamiltonians for which Kruskal’s theory works in a closed form. 

If the equations of motion and the auxiliary equation are uncoupled, then the 
invariant leads to a ‘nonlinear superposition’ of solutions. 

The results of this paper, along with Lutzky (1978) and Ray and Reid (1979), show 
that Noether’s theorem is a powerful tool in searching for invariants in time-dependent 
systems. Application of Noether’s theorem to different Lagrangians and a detailed 
comparison with other methods for generating invariants are topics for further study. 

Note added in proof. If in the Lagrangian (2.5) we transform the dependent variable by 

P = Y2’(k+2),  (4.2) 

the Lagrangian takes the form 

3 + E  Gi(t)Fi(y), ( 2 / - k ) / ( k + 2 )  L =iy2+ by (4.3) 

where b, Gi and I ; ( y )  are still arbitrary functions and we have rescaled L by a constant. 
Substituting for the second term in (4.3) the expression 

and calling G(t)  = [(k + 2)/(21+ 2)]d the Lagrangian, after dropping the total time 
derivative in (4.4), becomes 

+E Gi(t)Fl(y). (4.5) (21+2) / ( k+2)  L=$y2+G(t)y  

Since Gi and Fi are arbitrary functions the term G(t)y”’+2’’‘k+2’ can be included in the 
sum without loss of generality. The Lagrangian now takes the form 

L =ij,’+E Gi(t)Fi(y). (4.6) 

The Lagrangian (4.6) is of the form considered by Ray and Reid (1979), e.g. (1.5). 
Therefore, the invariants associated with the polynomial Lagrangians considered in 
this paper are transformable into the form discussed in Ray and Reid (1979). 
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